Two New 3,4-Seco-ent-kaurenes and Other Constituents from the Costa Rican Endemic Species Croton megistocarpus

by Soledad Mora^a), Victor Castro^a), Luis Poveda^b), Max Chavarría*^a), and Renato Murillo^a)

a) Escuela de Química and CIPRONA, Universidad de Costa Rica, 2060, San José, Costa Rica (phone: +50625114477; fax: +50622535020; e-mail: max.chavarria@ucr.ac.cr)
b) Escuela de Ciencias Ambientales, Facultad de Ciencias de la Tierra y el Mar, Universidad Nacional, 3000, Costa Rica

Following our phytochemical studies of Costa Rican plants, we report the isolation of two new 3,4-seco-ent-kaurenes from the aerial parts of Croton megistocarpus (Euphorbiaceae). The structures of the two compounds were elucidated as 14-[(2-methylbutanoyl)oxy]-3,4-seco-ent-kaura-4(19),16-dien-3-oic acid (1) and 14-[(2Z)-2-methylbut-2-enoyl]oxy]-3,4-seco-ent-kaura-4(19),16-dien-3-oic acid (2). In addition, seven known diterpene clerodanes were also isolated and identified. The structures of the compounds were elucidated by spectroscopic methods, including HR-MS, ¹H-NMR, ¹³C-NMR, COSY, HMQC, HMBC, and NOESY experiments.

Introduction. – The *Croton* genus comprises *ca.* 1300 species of trees, shrubs, and herbs distributed in tropical areas [1]. In Costa Rica, 41 species have been identified, some of which have been used in folk medicine, *e.g.*, *C. gossypiifolius* is used in gum disease, *C. niveus* as antispasmodic and appetite stimulant, and *C. tonduzii* to treat malarial fevers [2]. This genus is a valuable source of *ent*-kaurenes [3], clerodanes [4], flavonoids [4], alkaloids [5][6], and lignans [7][8] which exhibit a wide range of pharmacological activities. Following our chemical studies of Costa Rican plants, we investigated the endemic species *Croton megistocarpus* [9], a plant that has not yet been subjected to phytochemical or pharmacological studies. In this very first study, two new 3,4-seco-*ent*-kaurenes 1¹) and 2, and seven known diterpene clerodanes 3–9 were isolated and identified (*Fig. 1*).

Results and Discussion. – Compound 1^1) was isolated as a white powder, and its elemental composition was determined to be $C_{25}H_{39}O_4$, as deduced from its positive-ion-mode HR-MS (m/z 403.2830 ($[M+1]^+$)). Its chemical structure was assigned by the combination of spectroscopic methods including 1 H- and 13 C-NMR, COSY, NOESY, HMBC, and HMQC. The 1 H- and 13 C-NMR data (Table) confirmed that the molecule contained 25 C-atoms including four Me groups, ten CH₂, and five CH groups, four quartenary C-atoms, and two C=O groups. The correlations (1 H, 1 H-COSY) between H–C(22), Me(23), CH₂(24), and Me(25) (sequence MeCH₂CH(Me)–) and the long-distance correlation of Me(23) with C(21)=O (δ (C) 175.0) provided evidence for the presence of one (2-methylbutanoyl)oxy group at

¹⁾ Partly arbitrary atom numbering; for systematic names, see Exper. Part.

Fig. 1. Two new 3,4-seco-ent-kaurenes, 1 and 2, and the known clerodanes 3-9, isolated from C. megistocarpus

position C(14) (δ (C) 68.4). In addition to this group, the presence of 20 more C-atoms suggested that compound **1** might have a diterpene skeleton. Comparison of the ¹H-and ¹³C-NMR data with those of known kaurenes indicated a close structural similarity of **1** with *ent*-kaurenes isolated from *C. tonkinensis* [10–12]. To verify this observation, a detailed structural analysis was performed: The ¹H, ¹H-COSY plot showed correlations of an exomethylidene group, *i.e.*, CH₂(17) (δ (H) 4.92 and 4.80 (2s); δ (C) 103.9 and ²J to C(16), δ (C) 154.7), with two signals at δ (H) 2.55 (d, 1 H of CH₂(15)) and 2.00 (ddd, 1 H of CH₂(15)). The HMBC spectrum inferred the presence of a CH group (C(13); δ (C) 42.7; δ (H) 2.45–2.47 (m)) allylic to the C=C bond. Longrange correlations (HMBC) were observed between C(13) and the signal of the secondary-alcohol-derived H–C(14) (δ (H) 5.18 (d); δ (C) 68.4), alcohol which is esterified with 2-methylbutanoic acid (deduced from the H–C(14) chemical shift). Moreover, other long-range correlations were observed between H–C(14) and C(8), C(9), and C(12). All these observations confirmed a similar structural fragment present in the structure of the *ent*-kaurenes. On the other hand, in the HMBC spectrum,

Table. ¹H- and ¹³C-NMR Data (400 and 100 MHz, resp.) of the New 3,4-Seco-ent-kaurenes 1 and 2, Isolated from C. megistocarpus.

	1 ^a)		2 ^b)	
	$\delta(\mathrm{H})$	$\delta(C)$	$\delta(H)$	$\delta(C)$
CH ₂ (1)	1.79-1.82, 1.80-1.83 (2m)	33.7	2.32-2.42, 2.47-2.55 (2m)	34.6
$CH_2(2)$	2.14-2.19, 2.17-2.21 (2m)	28.8	2.78 - 2.85, 2.95 - 3.05 (2m)	29.3
C(3)		178.8		175.9
C(4)		146.9		147.7
H-C(5)	$1.75 - 1.80 \ (m)$	50.1	$2.08-2.10 \ (m)$	50.2
$CH_2(6)$	1.22-1.25, 1.23-1.28 (2m)	39.5	1.70 - 1.78, 1.88 - 1.95 (2m)	39.6
$CH_2(7)$	1.58 - 1.62, 1.87 - 1.92 (2m)	39.7	2.18-2.24, 2.33-2.42 (2m)	39.9
C(8)		42.7		42.9
H-C(9)	$1.31 - 1.38 \ (m)$	52.6	2.47-2.55 (m)	52.7
C(10)		39.8		40.1
$CH_2(11)$	1.19 - 1.28, 1.19 - 1.28 (2m)	26.2	1.70-1.78, 2.00-2.05 (2m)	26.4
$CH_2(12)$	0.88 - 0.98, 1.58 - 1.63 (2m)	39.2	1.44 - 1.50, 2.18 - 2.21 (2m)	39.3
H-C(13)	2.45 - 2.47 (m)	42.7	2.95-2.99 (m)	42.8
H-C(14)	5.18 (d, J = 4.8)	68.4	5.85 (d, J = 5.0)	68.9
CH ₂ (15)	2.00 (ddd, J=16.5, 2.0, 2.0),	48.1	2.42-2.51 (m),	48.2
	2.55 (br. $d, J = 16.5$)		3.02-3.06(2m)	
C(16)		154.7		155.2
$CH_2(17)$	4.80, 4.92 (2 br. s)	103.9	5.17, 5.30 (2 br. s)	103.8
Me(18)	1.61 (br. s)	23.6	2.12 (br. s)	23.8
CH ₂ (19)	4.67, 4.87 (2 br. s)	114.4	5.19, 5.35 (2 br. s)	114.3
Me(20)	0.64(s)	21.5	1.24 (s)	21.8
C(21)		175.0		167.0
H-C(22)	2.23-2.29 (m)	42.0		129.5
or C(22)	. ,			
Me(23)	1.13 (d, J = 6.8)	16.9	2.20 (br. s)	12.1
$CH_{2}(24)$	1.31-1.38, 1.66-1.72 (2m)	26.8	7.31 $(ddd, J = 7.0, 5.0, 2.0)$	137.0
or H-C(24)	,			
Me(25)	0.93 (t, J = 7.5)	12.1	1.96 (dd, J = 7.0, 1.0)	14.2

^a) In deuterated benzene. ^b) In deuterated pyridine.

the allylic Me(18) (δ (H) 1.61 (s)) showed correlations with an exocyclic CH₂=C group (δ (C) 146.9 (C(4)) and 114.4 (C(19))) and CH(5) (δ (C) 50.1; δ (H) 1.75 – 1.80 (m)). The Me(20) group (δ (H) 0.64 (s)) showed correlations with C(10) (δ (C) 39.8), C(1) (δ (C) 33.7), C(5) (δ (C) 50.1), and C(9) (δ (C) 52.6). In the HSQC spectrum, C(1) (δ (C) 33.7) correlated with two H-atoms at δ (H) 1.79 – 1.82 and 1.80 – 1.83 (2m; CH₂(1)), which correlated in the 1 H, 1 H-COSY with CH₂(2) (δ (H) 2.14 – 2.19 (m)) and in the HMBC spectrum with the C(3)OOH group (δ (C) 178.8). These observations suggested that ring A of this ent-kaurene is cleaved between C(3) and C(4) revealing the structure of a 3,4-seco-ent-kaurene. The 1 H, 1 H-COSY and HMBC data enabled to complete the structure elucidation of 1. The relative configuration of 1 was determined by NOE enhancement experiments (Fig. 2) which showed significant correlations of CH₂(17) with H–C(13) and CH₂(15), and correlations of H–C(14) with CH₂(19) and Me(20); these observations suggested a trans position of H–C(5) and Me(20) and a cis-

Fig. 2. NOE Correlations of compound 1. R = (2-methylbutan-oyl)oxy group.

decaline configuration at the fusion site of the two 6-membered rings. On the basis of the above data, the structure of compound **1** was thus established as 14-[(2-methylbutanoyl)oxy]-3,4-seco-*ent*-kaura-4(19),16-dien-3-oic acid.

Compound **2** showed NMR spectra (*Table*) similar to those of **1**; however, differences in the 1 H- and 13 C-NMR and NOE data suggested that instead of a (2-methylbutanoyl)oxy group in **1**, a (2Z)-2-methylbut-2-enoyloxy group was present in **2**. Otherwise, the 13 C-NMR chemical shifts indicated the same configuration of **2** as that of **1**.

The isolation of these two new natural products from C. megistocarpus suggests that 3,4-seco-ent-kaurenes can be considered as a marker of chemotaxonomy since this diterpenoid subclass has only been reported in Croton species [13]. Moreover, the seven known clerodanes 3-9 were isolated and identified $(Fig.\ 1)$, which established that the Croton genus is a valuable source of diterpenes.

Further studies to evaluate the biological activities of the new compounds are currently underway in our laboratory.

We thank Dr. *Enrique Perez-Payá* at the Centro de Investigaciones Príncipe Felipe, Valencia, Spain, for measuring the mass spectra and the *Deutscher Akademischer Austausch Dienst* (DAAD) for generous financial support.

Experimental Part

General. Prep. HPLC: Knauer HPLC pump, type 6400; Econsil C_{18} column; differential refractometer detector. Column chromatography (CC): silica gel (SiO₂; 70–230 mesh; Merck). TLC: silica gel 60 F_{254} (Merck). NMR Spectra: Varian-Mercury-400 instrument; δ in ppm rel. to Me₄Si as internal standard, J in Hz. HR-MS: carried out at the Mass Spectrometry Service of the Institute of Advanced Chemistry of Catalonia (IQAC-CSIC, Spain); Acquity-UPLC system (Waters) coupled to a LCT-Premier-XE detector (Waters); Aquity-UPLC-BEH-C₁₈ (Waters) column (1.7 μm; 2.1 × 100 mm), eluent MeCN/H₂O mixtures containing 20 mm of HCOOH.

Plant Material. The leaves of *C. megistocarpus* were collected in Sarapiquí, Heredia Province, Costa Rica, in March, 2003. A voucher specimen has been deposited with the Herbarium Juvenal Valerio, Heredia, Costa Rica, under reference No. 12090.

Extraction and Isolation. Air-dried and powdered leaves (0.79 kg) were extracted with tert-butylmethylether ('BuOMe)/MeOH 9:1 at r.t. for 24 h. After evaporation, the residue (14.6 g) was resuspended in CHCl₃. The CHCl₃ extract was applied to CC (SiO₂, hexane/'BuOMe 85:15 \rightarrow 0:100, then 'BuOMe/MeOH 90:10 and 80:20): Frs. $F_a - F_g$. Fr. F_b was subjected to flash CC (hexane/'BuOMe 85:15 \rightarrow 0:100): Frs. $F_{b1} - F_{b20}$. Fr. F_{b3} was separated by prep. TLC (hexane/'BuOMe 98:2): Frs. $F_{b3,1} - F_{b3,3}$. Fr. $F_{b3,3}$ was repurified by prep. TLC (hexane/'BuOMe 95:5): hardwickiic acid methyl ester (3; 21 mg) [14]. Fr. F_c was applied to flash CC (hexane/'BuOMe 85:15 \rightarrow 0:100): Frs. $F_{c1} - F_{c20}$. Fr. F_{c3} was fractionated by prep. TLC (hexane/'BuOMe 97:3): to give $F_{c3,1}$ which was repurified by prep. TLC (hexane/'CH₂Cl₂/'BuOMe 50:45:5): hardwickiic acid (4; 56 mg) [15]. Fr. F_{c4} was subjected to reversed-phase HPLC (MeOH/H₂O 9:1): 10-β-nidoresedic acid (5; 39 mg) [16] in pure form. Futhermore, in the

HPLC separation, a mixture containing 16-oxo-15,16H-hardwickiic acid (6; 12 mg) [16], which was repurified by TLC, was eluted with hexane/BuOMe 97:3. Fr. F_{c5} was fractionated by prep. TLC (hexane/CH₂Cl₂/BuOMe 50:45:5): $F_{c5,I}$ and $F_{c5,2}$. Fr. $F_{c5,I}$ corresponded to strictic acid (7; 81 mg) [17], and $F_{c5,2}$ was subjected to TLC (benzene/CH₂Cl₂/BuOMe 50:45:5): 16-oxo-15,16H-strictic acid (8; 3 mg) [18] and 15-hydroxy-16-oxo-15,16H-strictic acid (9; 6 mg) [18]. Fr. F_d was applied to flash CC (hexane/BuOMe $(85:15 \rightarrow 0:100)$: Frs. F_{d1} – F_{d20} . Fr. F_{d4} was fractionated by TLC (hexane/BuOMe 7:3): $F_{d4,I}$ and $F_{d4,2}$. Fr. $F_{d4,2}$ was separated by TLC (benzene/CH₂Cl₂/BuOMe 50:45:5): 1 (38 mg). Finally, Fr. F_f was subjected to flash CC (hexane/BuOMe $(85:15 \rightarrow 0:100)$): Frs. F_{fI} – F_{f20} . Fr. F_{fI} was separated by TLC (hexane/BuOMe 6:4): 2 (320 mg).

The structure determination of the isolated compounds was based on spectroscopic methods (HR-MS, 1D- and 2D-NMR), and by comparison with those reported in the literature.

14-[(2-Methylbutanoyl)oxy]-3,4-seco-ent-kaura-4(19),16-dien-3-oic Acid (1): White powder. 1 H- and 13 C-NMR: Table. HR-MS: 403.2830 ($[M+1]^{+}$, $C_{25}H_{39}O_{4}^{+}$; calc. 403.2849).

14-{[(2Z)-2-Methylbut-2-enoyl]oxy}-3,4-seco-ent-kaura-4(19),16-dien-3-oic Acid (2): White powder. 1 H- and 13 C-NMR: Table. HR-MS: 401.2710 ([M+1] $^{+}$, C_{25} H₃₇O $_{4}^{+}$; calc. 401.2692).

REFERENCES

- [1] A. Salatino, M. L. F. Salatino, G. Negri, J. Braz. Chem. Soc. 2007, 18, 1.
- [2] M. Nuñez, 'Plantas Medicinales de Costa Rica y su Folclore', Editorial Universidad de Costa Rica, San José, 1984.
- [3] P. M. Giang, H. Z. Jin, P. T. Son, J. H. Lee, Y. S. Hong, J. J. Lee, J. Nat. Prod. 2003, 66, 1217.
- [4] M. A. M. Maciel, A. C. Pinto, A. C. Arruda, S. G. R. Pamplona, F. A. Vanderlinde, A. J. Lapa, A. Echevarria, N. F. Grynberg, I. M. S. Côlus, R. A. F. Farias, A. M. Luna Costa, V. S. N. Rao, J. Ethnopharmacol. 2000, 70, 41.
- [5] H. C. Del Castillo Cotillo, F. De Simone, V. De Feo, Biochem. Syst. Ecol. 1996, 24, 464.
- [6] W. J. Eisenreich, G. Höfner, F. Bracher, Nat. Prod. Res. 2003, 17, 437.
- [7] S. De Marino, F. Gala, F. Zollo, S. Vitalini, G. Fico, F. Visioli, M. Iorizzi, Molecules 2008, 13, 1219.
- [8] L. Pieters, T. de Bruyne, M. Claeys, A. Vlietinck, M. Calomme, D. vanden Berghe, J. Nat. Prod. 1993, 56, 899.
- [9] J. González Ramírez, L. Poveda Álvarez, Lankesteriana 2003, 3(3), 7.
- [10] P. M. Giang, P. T. Son, J. J. Lee, H. Otsuka, Chem. Pharm. Bull. 2004, 52, 879.
- [11] P. T. Minh, P. H. Ngoc, W. C. Taylor, N. M. Cuong, Fitoterapia 2004, 75, 552.
- [12] P. T. H. Minh, P. H. Ngoc, D. N. Quang, T. Hashimoto, S. Takaoka, Y. Asakawa, Chem. Pharm. Bull. 2003, 51, 590.
- [13] A. I. Suárez, K. Chávez, F. Delle Monache, L. Vásquez, D. M. Delannoy, G. Orsini, R. S. Compagnone, Nat. Prod. Commun. 2008, 3, 319.
- [14] M. Costa, C. M. A. Tanaka, P. M. Imamura, A. J. Marsaioli, Phytochemistry 1999, 50, 117.
- [15] J. D. McChesney, A. M. Clark, E. R. Silveira, J. Nat. Prod. 1991, 54, 1625.
- [16] P. Singh, S. Jain, J. Jakupovic, *Phytochemistry* **1988**, 27, 1537.
- [17] I. Muhammad, F. S. El-Feraly, J. S. Mossa, A. F. Ramadan, *Phytochemistry* 1992, 31, 4245.
- [18] V. Krishna, P. Singh, Phytochemistry 1999, 52, 1341.

Received March 24, 2011